Oscillations and waves

Section

Learning competencies

2.1 Periodic motion
(basic concepts)

(page 53)

Describe the periodic motion of a vibrating object in qualitative
terms, and analyse it in quantitative terms (e.g. the motion of a
pendulum, a vibrating spring, a tuning fork).

Define simple harmonic motion (SHM) and describe the
relationship between SHM and circular motion.

Derive and use expressions for the frequency, periodic time,
displacement, velocity and acceleration of objects performing
SHM.

Draw and analyse x-t, v—t and a-t graphs for SHM.

Use Newton's second law and Hooke's law to derive w = vk/m.
Describe the effects: free oscillations, damping, forced oscillations
and resonance.

Analyse the components of resonance and identify the conditions
required for resonance to occur in vibrating objects and in various
media, including the effects of damping on resonance.

Explain the energy changes that occur when a body performs SHM.
Draw and interpret graphs showing the variation of kinetic energy
and potential energy of an object performing SHM.

Relate the energy of an oscillator to its amplitude.

Solve problems on SHM involving period of vibration and energy
transfer.

2.2 Wave motion
(page 80)

Describe the characteristics of a mechanical wave and identify that
the speed of the wave depends on the nature of medium.

Use the equation v =/ T/p to solve related problems

Describe the characteristics of a travelling wave and derive the
standard equation y = Acos(mt + ¢)

Define the terms phase, phase speed and phase constant for a
travelling wave.

Explain and graphically illustrate the principle of superposition,
and identify examples of constructive and destructive interference.
Identify the properties of standing waves and for both mechanical
and sound waves, explain the conditions for standing waves to
occur, including definitions of the terms node and antinode.
Derive the standing wave equations.

Calculate the frequency of the harmonics along a string, an open
pipe and a pipe closed at one end.

Explain the modes of vibration of strings and solve problems
involving vibrating strings.

Explain the way air columns vibrate and solve problems involving
vibrating air columns.
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Section Learning competencies
¢ Analyse, in quantitative terms, the conditions needed for
resonance in air columns, and explain how resonance is used in a
variety of situations.
e Identify musical instruments using air columns, and explain how
different notes are produced.
2.3 Sound, loudness ¢ Define the intensity of sound and state the relationship between
and the human ear intensity and distance from the source.
(page 97) e Describe the dependence of the speed of sound on the bulk

modulus and density of the medium. Use v =+ B/p

Give intensity of sound in decibels, and define the terms threshold
of pain and threshold of hearing.

Describe the intensity level versus frequency graph to know which
the human ear is most sensitive to.

Explain the Doppler effect, and predict in qualitative terms the
frequency change that will occur in a variety of conditions.
Explain some practical applications of the Doppler effect.

KEY WORDS

A great many things in the world around us oscillate (vibrate)

simple harmonic motion
the periodic oscillation of an
object about an equilibrium
position, such that its
acceleration is always directly
proportional in size but
opposite in direction to its
displacement

central position
equilibrium position the
position of an oscillating
object when at rest

restoring force.the force on
a displaced object that acts
towards its original position

oscillating vibrating about o’

backwards and forwards, up-and down, side to side, in and out, etc.
Atoms within molecules vibrate and the size of these vibrations

is proportional to temperature. Oscillations of charges produce
electromagnetic waves: e.g. a current oscillating up and down an
aerial produces radio waves. Vibrations of our vocal chords produce
sound waves, as do vibrations of strings and of air inside tubes in
musical instruments. Parts of machinery, e.g. in washing machines
and in cars, vibrate, sometimes when we don’t want them to!

When engineers build large structures like skyscrapers and bridges,
they have to understand how the wind or the ways people walk
across them will make them oscillate. It is impossible to stop such
structures oscillating altogether, but if engineers don't design their
structures to control these vibrations, they might end up shaking
themselves to pieces.

Most of these oscillations are periodic. This means that they keep
doing exactly the same thing in the same amount of time again
and again. In some cases, usually for large objects or structures,

each cycle (backwards and forwards, up and down, side to side, in
and out, etc.) of the oscillation could take many seconds or even
much longer. These are low-frequency oscillations. In other cases
there can be hundreds, thousands or even thousands of billions

of complete vibrations every second. These are high-frequency
oscillations. This predictable time period can be very useful. For
example, the predictable time period of pendulums, of masses on
springs or of quartz crystals is used to count the passing of time in
clocks and watches.

The way things oscillate can be quite complex, but many
oscillations are very close to a special form of periodic motion
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UNIT 2: Oscillations and waves

called simple harmonic motion, and more complicated motion
can be shown to be simply a sum of simple harmonic motions
at different frequencies. This unit will analyse a few examples of
oscillating objects performing simple harmonic motion in some
mathematical detail.

2.1 Periodic motion (basic concepts)

By the end of this section you should be able to:

Describe the periodic motion of a vibrating object in
qualitative terms, and analyse it in quantitative terms (e.g.

the motion of a pendulum, a vibrating spring, a tuning fork).

Define simple harmonic motion (SHM) and describe the
relationship between SHM and circular motion.

Derive and use expressions for the frequency, periodic
time, displacement, velocity and acceleration of objects
performing SHM.

Draw and analyse x-t, v—t and a-t graphs for SHM.
Use Newton's second law and Hooke’s law to derive w = vk/m.

Describe the effects: free oscillations, damping, forced
oscillations and resonance.

Analyse the components of resonance and identify the
conditions required for resonance to occur in vibrating
objects and in various media, including the effects of
damping on resonance.

Explain the energy changes that occur when a body
performs SHM.

Draw and interpret graphs showing the variation of kinetic
energy and potential energy of an object performing SHM.

Relate the energy of an oscillator to its amplitude.

Solve problems on SHM involving period of vibration and
energy transfer.

Periodic oscillations

DID YOU KNOW?

The pendulum clock

was invented in 1656 by
Dutch scientist Christiaan
Huygens. Huygens was
inspired by investigations
of pendulums by Galilei
Galileo, beginning around
1602. Galileo discovered
the key property that
makes pendulums useful
timekeepers: isochronism,
which means that the
period of swing of a
pendulum is approximately
the same for different sized
swings. Up until the 1930s,
the pendulum clock was
the world’s most accurate
timekeeper, but they must
be stationary to operate as
any motion or accelerations
will affect the motion of
the pendulum, causing
inaccuracies, and so they
could never be used for
portable devices. They are
now out of date of course;
we now have more accurate
devices, though still using
simple harmonic motion.

If something is oscillating (vibrating) this means that it is moving
backwards and forwards, up and down, side to side, in and out, etc,
around some central position. This central position is called the
equilibrium position and itis the position of the object when it is
at rest.

Whenever an object is displaced from its equilibrium position
there is a force that acts towards its original position. This force is
often referred to as a restoring force, as it tries to restore the system
to its equilibrium position. This is much easier to understand if we
look at some simple examples. clock

Figure 2.1 A simple pendulum
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UNIT 2: Oscillations and waves

How does a pendulum work?

(@) If the (b) When the (c) The pendulum | (d) The (e) The
pendulum bob pendulum bob bob keeps moving, | pendulum pendulum bob
is pulled to one gets back to the slowing down all bob passes arrives back
side and released, | equilibrium position, | the time, until through the | at where it
it accelerates it is moving relatively | itis at the same equilibrium started. It has
back towards fast and, although height as it started | position completed one
its equilibrium there is no resultant and accelerates again, going | cycle, and will
position. force now, its inertia | back towards back the now do the
keeps it moving. the equilibrium other way. same again,
position. and again . ..

Figure 2.2 Oscillation of a pendulum when the bob is pulled to one
side and released

resultant force the overall
force acting on an object A simple pendulum is made by hanging a mass, known as the bob,

acceleration rate of change on a string from a fixed support, as shown in Figure 2.2.

of velocity If we let the mass hang without swinging, it will hang directly
below the support with all forces on it balanced. This position,
where the resultant force acting on the bob is zero, is known as the
equilibrium position.

If we give the bob a small initial displacement by pulling it to
one side and then release it, there will be a resultant force, due to
the weight of the bob and the tension acting in the string. This
force pulls it back towards the equilibrium position. This causes
acceleration towards the equilibrium position (opposite to the
direction of displacement).

When the bob reaches the equilibrium position, the resultant force
is now zero, but the bob is moving and can't stop instantly. Its
inertia keeps it moving through the equilibrium position, and if
there is no significant friction of air resistance, it will keep moving,
slowing down all the time until it is as high as it was when it started.

It now has a displacement equal and opposite to its starting
displacement. However, as displacement is a vector quantity it
is now a negative value. If the initial displacement was 3 cm, the
displacement after one swing (half an oscillation) will be -3 cm.

In exactly the same way, it will swing back to where it started to
complete one complete cycle of the oscillation. It will now repeat
this process again and again.

It is important to notice the force causing the oscillation always acts
towards the equilibrium position.
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UNIT 2: Oscillations and waves

How does a mass on a spring oscillate?

(a) If the mass is
pulled down, the
tension in the
spring is greater
the weight of
the mass. The
resultant force is
upwards and the
mass accelerates

(b) When the
mass gets back to
the equilibrium
position, it is
moving relatively
fast and although
the weight of the
mass balances
the tension in the

(c) The mass keeps

moving, slowing down
all the time, until it

is as far above the

equilibrium point as
it started below. The

weight of the mass
is greater than the

tension in the spring,

(d) The
mass passes
through the
equilibrium
position
again, going
back the
other way.

(e) The mass
arrives back
at where it
started. It has
completed one
cycle, and will
now do the
same again,
and again . . .

the resultant force is
now downwards and
the mass accelerates
downwards.

upwards when
released.

spring and there is
no resultant force
now, its inertia
keeps it moving.

Figure 2.3 Oscillation of a mass-spring system when the mass is
displaced downwards and released

If a mass is hung from a support by a spring and allowed to settle
until it is stationary, it will hang with the spring stretched so that the
restoring force (in this case the tension in the spring) is equal and
opposite to the weight of the mass. This is the equilibrium position.

If we now pull the mass down, the tension in the spring will be
greater than the weight of the mass. The resultant force on the

mass is upwards and so, if we let go, it accelerates upwards. When
the mass gets back to the equilibrium position it is moving and,
although there is noresultant force here, its inertia keeps it moving.

The mass keeps moving, slowing down all the time, until it is as far
above the equilibrium point as it started below. The tension in the
spring is now less than the weight of the mass, the resultant force
is now downwards and the mass accelerates downwards. The mass
passes through the equilibrium position again, and carries on until
it arrives back at where it started. It has completed one cycle, and
will now do the same again; and again ...

Grade 12




UNIT 2: Oscillations and waves

Figure 2.5 Vehicle suspensions
can act like mass—spring systems.

SHM

o The acceleration is
proportional to the
displacement.

o+ The acceleration is in the
opposite direction to the
displacement.

Sketch a diagram of the forces acting on a mass-spring system:
a) when in equilibrium position
b) at the bottom of its oscillation

c) at the top of its oscillation.

This process would also happen if the spring was horizontal on a
low friction surface.
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Figure 2.4 A horizontal mass-spring system

Discussion activity

We have used the words displacement and acceleration in
describing the'motions of the pendulum and the mass-spring
system. These are vector quantities: their directions are very
important. When the bob or mass is moving away from the
equilibrium position and slowing down, which direction is the
acceleration in? What can you say about the direction of the
acceleration (i) relative to the equilibrium position, and (ii)
relative to the direction of displacement? What do you know in
general about the acceleration of an object and the resultant force
acting-on it?

How do we define SHM?

Simple harmonic motion (SHM) is a periodic oscillation of an
object about an equilibrium position such that its acceleration is
always directly proportional in size but opposite in direction to its
displacement. (The acceleration is always towards the equilibrium
position.)

This defining relationship is shown in Figure 2.6. This graph is
much simpler than many graphs that will follow later in this unit,
but it is the most important.

It follows from Hooke’s law that the restoring force has the same
relationship to the displacement (as forces and acceleration are
directly proportional). The greater the displacement from the
equilibrium position the greater the restoring force, and this force
acts in the opposite direction to the displacement.
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UNIT 2: Oscillations and waves

Consider the mass—spring system. When the spring is most
extended, it is furthest from its equilibrium position. At this point
the restoring force is also at its greatest, but it acts in the opposite
direction.

Acceleration / m/s?

Displacement / m

Figure 2.6 Defining relationship for SHM: acceleration is directly
proportional but opposite in sign to displacement.

What does SHM look like?

If we plot how the displacement of an object performing simple
harmonic motion varies with time, we find that the variation is
sinusoidal, as shown in Figure 2.7. Note that the displacement
goes positive and negative as the mass oscillates either side of the
equilibrium position.

The size of the maximum displacement in either direction is called
the amplitude A. The time to perform one complete cycle of the
oscillation is called the time period T.

Displacement / m

[ ISP S

T
1
I
I
I
L
|
1

| time period T

Figure 2.7 Variation of displacement with time for simple harmonic
motion

When we say the oscillation is sinusoidal, we mean that the

displacement is described mathematically using sine or cosine
functions:

x = A sin (2751) orx=A cos (2751),
T T

Grade 12
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displacement the distance
moved in a specific direction

sinusoidal an oscillation
that can be described
mathematically using sine or
cosine functions

amplitude the maximum
displacement of the wave from
the equilibrium position

time period the time taken
for one complete cycle of an
oscillation




UNIT 2: Oscillations and waves

where A is the amplitude of the oscillation and T the time period.
Either could be used, but throughout the rest of this chapter we will
use,

x=A sin(2n£),
T

although the cosine function gives a better d;ascription if the SHM is
started by displacing the oscillator and then releasing it. M

Ifx=A sin<2ft %), with (%Et) expressed in'radians;

when t=0 x=Asin (2%0) = A sin (0)". =0

t=Z szsm(gt—I) ﬁAsin(n—) =A
4 \'T 4 2

t= T % (4 sfn (E—Z) = A sin (1) =0
2 T 2

tzg_ szsm(E—ﬁ)-' =Asin(—) =-A
4 T4

=Ty szsin(Z?n'T = A sin (2m) =0

Looking carefully at the information above you can see how in one
oscillation the displacement starts at O rises to a positive amplitude,
falls back to zero, falls to a negative amplitude and then rises back to
zero.

Activity 2.2: Displacement using cosine

Use the same method above to show how the displacement
varies if cosine were to be used instead of sine. Sketch the
corresponding displacement-time graph.

Discussion activity

A sinusoidal motion looks fairly complicated, so why is simple
harmonic motion called simple? Looking at Figure 2.7 should
give you a clue.
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UNIT 2: Oscillations and waves

How can we observe SHM?

Figure 2.8 shows a number of ways of obtaining a graph of
displacement against time for oscillators performing SHM.

t
/ motion
sensor
Hang a small bucket with a hole in the bottom If you have a motion sensor connected to a
on a rope. Fill the bucket with sand so that a PC, there are several ways to record variation

stream of sand runs out onto a long sheet of paper | of displacement with time. One way is to
underneath. Start the bucket swinging and pull the | place the sensor facing upwards underneath
paper at a constant speed and the sand will draw a | a mass hanging on a spring.

sinusoidal wave.

~—— motion

A dynamics trolley moving backwards and forwards with a anchored spring attached to both ends
can make a more consistent target for a motion sensor.

angle motion
sensor

An angular motion
sensor is an easy way
of observing how a
pendulum swings.

pendulum

Figure 2.8 Experiments to observe SHM
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UNIT 2: Oscillations and waves

Think about this...

If the frequency of a mass-
spring system is 50 Hz how
many times in 1 second will
the mass pass through its
equilibrium position?

For the same pendulum
calculate the displacement
after:

a) 1.2 s
b) 3.4s

Explain the significance of
the negative value.

Think about this...

It is a good idea to avoid
using the word ‘fast” when
describing oscillations. Even
if the frequency is low, if the
amplitude of the oscillation
is large, the oscillator will
be moving quickly when it
goes through the equilibrium
position, and so the word
fast could still apply. This can
lead to confusion.

To give a good clear scientific
description, simply talk about
high or low frequencies and
large or small amplitudes.

KEY WORDS

frequency the number of
cycles per second

Frequency and time period

The frequency, £, of an oscillation is the number of cycles it
completes per second. The unit is the hertz, symbol Hz. A frequency
of 50 Hz would correspond to 50 complete oscillations per second.

Frequency is related to time period by:

and so our mathematical expression for displacement can be written
as

* x=Asin 2nft).

Worked example 2.1

A pendulum has a frequency of 4.0 Hz and amplitude of 5.0
cm. Determine the displacement after 4.6 seconds.

® x =Asin (2nft). State the equation of SHM

e x=0.050 sin (2m x 4.0 x 4.6) Substitute the known values
® x=0.029 mor 2.9 cm.

Solve the equation and give
the units

~ Displacement (x)

Cosine wave Sine wave

Figure 2.9 Oscillations of an object

Discussion activity

One feature of SHM, particularly useful in building clocks, is that,
for perfect SHM, the frequency or time period does not vary with
amplitude. So if an oscillator does lose energy and its amplitude
fall over time, the time period will not change.

Circular motion, SHM and angular frequency

If a point P moves around in circle of radius A, as shown in
Figure 2.10, starting from point C, then the height of point P, after
it has turned through angle 9 is given by

* h=Asin0
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UNIT 2: Oscillations and waves

We now need to introduce a new quantity: angular speed w.

Angular speed is the rate of change of angle turned 0 with time, Think about this...

in exactly the same way that linear velocity v is the rate of change We must use radians when

of linear displacement s with time. w is measured in radians per considering all the equations
second (rad/s). of SHM. Remember 2m radians
. o= 0 is equal to 360° or one

t complete oscillation.
If the point P is rotating at angular speed w radians per seconds

then, after time ¢ seconds, the total angle turned, in radians, is

* O=wt P height of
circleradius A_/1\ _ point

and so we can rewrite the equation for the height of point P as £ Nz 8iN 6

* h=Asin(wt) " c

If P goes round in one complete cycle, the angle turned is 2m. If P
is rotating with a frequency of f cycles per second, the total angle
turned per second is f x 2n radians. Hence

* w=2n

f Figure 2.10 The height h of point
In the equation x = Asin (2xft) we can replace 2nf by w and write: P when it has turned through
* x=Asin(wt) angle 6 from starting point C is

j = Asi .
which is the same as our expression for the height of point P given by h = Asin (1)

rotating at angular speed w. The height & of point P going round in
a circle and the displacement x of an object performing SHM are
therefore the same, as shown in Figure 2.11.

height of rotating point P = A sin (wt) Displacement x = A sin (wt) w = 2if

-TTTT

t (rads)

wt

Time (s)

circle radius A

§_- ————
———— - l._}l)

T

Figure 2.11 After time t, the displacement x of an object performing
SHM of amplitude A and frequency fis.the same as the height h of a

oint P performing circular motion with radius A and angular speed
e ot forming guarsp KEY WORDS

The relationship between angular speed and time period is angular speed the rate Of
2T change of angle turned with
*w= T time
Because of its relationship to frequency, w is sometimes called angular frequency the
angular frequency. rate of change of angular
displacement
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UNIT 2: Oscillations and waves

Discussion activity

Figure 2.12 shows a piston moving backwards and forwards
inside a cylinder connected by a rod, hinged at both ends, to a
rotating wheel.

(=

Figure 2.12 Motion of a piston

Under what conditions does the motion of the piston
approximate to SHM?

Displacement, velocity and acceleration in SHM

rate of change The speed at The velocity of the oscillating mass is the rate of change of
which a variable changes over | displacement. It becomes zero at the limits of the oscillation. For
a specific period of time example, at the top of a pendulum’s swing.

In general, velocity can be found as the gradient of the
displacement-time graph. At the maximum displacement (the
amplitude) the gradient is zero - consequently the velocity is zero.
Therefore, when x = +A the velocity is zero.

The maximum velocity occurs when the oscillating object passes
through the equilibrium position. Again this may be seen on the
displacement-time graph. The gradient of the line is at its greatest
when it passes through the equilibrium position therefore the
velocity is greatest at this point.

zero gradient at the amplitude

DlsplacemeV of the oscillation

Ay

\

“

‘\/ \/ -
/ |

Maximum gradient as the object
passes through its equilibrium position

Figure 2.13 The gradient of the displacement—time graph is equal to
the velocity of the object.

The equation of the oscillation shown in Figure 2.13 is x = Asin(wt).
Therefore the velocity may be found by:

* v=wAcos(wt)

H Grade 12




UNIT 2: Oscillations and waves

and the maximum size of velocity (v,)
* v, =wA

This equation is obtained when cos(wt) = 1. This happens whenever
the mass passes through the equilibrium position.

Acceleration is the rate of change of velocity, or the gradient of the
velocity time graph. This can be shown to give

* a=-w*Asin(wt)

and the maximum size of acceleration (a,)

* a,=wA

This equation is obtained when sin(wt) = 1. This happens whenever
the mass reaches its maximum displacement.

Since Asin(wt) = x, this is the same as

* a=-wAx

This is the defining equation for SHM.

We have already stated that acceleration is directly proportional
and opposite in sign to displacement. We now see that the constant
of proportionality is —w’. Remember this is also equal to (27f)* or
2n/T).

A graph of acceleration plotted against time will look like an
upside down version of the graph of displacement, emphasising the
crucial point that acceleration is always in the opposite direction to
displacement.

Graphs of displacement, velocity and acceleration against time ¢ or
angle wt are shown overleaf in Figure 2.14.

Two key points to note and check for yourself looking at these is that:

* the velocity at any time is the gradient of the displacement-
time graph at that time and the acceleration at any time is the
gradient of the velocity-time graph at that time, and

* the acceleration is directly proportional to and opposite in
sign to the displacement.

If the oscillator starts from the limit of oscillation at x = A, then
displacement is better described using a cosine wave and the
equations for displacement, velocity and acceleration become:

SHM equation summary

Remember you can use either the sine or cosine function to
describe the displacement of a system oscillating with SHM. You
need to consider when the timing of the oscillation begins.

* Timing starts with system in its equilibrium position - sine

* Timing starts with system at its maximum displacement > cosine

Grade 12

Think about this...

The equation for velocity can
be found using differential
calculus.

ds d .
= — 5 — (A t
% dt(sm(u)))

dt
= wAcos(wt)

Think about this...

The equation for acceleration
can be found using
differential calculus.

a= @8 wAcos(wt)
dt dt

= —w?Asin(wt)

The equation can be written
as a = —wx.

This is a differential equation
and we have just shown that x
= Asin(mt) is a solution of this
differential equation. It can
be shown that x = Acos(mt) is
an equally valid solution, and
that a more general solution
is x = Acos(wt + 8,), where 6,
is an initial “phase” angle.




UNIT 2: Oscillations and waves

The equations are summarised below:

Using sin Using cos
to describe to describe
displacement displacement
Displacement x = Asin(wt) x = Acos(wt)
Velocity v = wAcos(wt) v = —wAsin(wt)
Acceleration a = -w?Asin(wt) a = —w*Acos(wt)

Displacement x = A sin(wf) / m

WA

WA

Figure 2.14 Graphs of displacement, velocity and acceleration against
time t or angle wt for an object performing SHM

Worked example 2.2

An object moves with simple harmonic motion of amplitude
11 cm and a time period of 2.4 s. Calculate:

a) the frequency

b) the angular frequency

c) the maximum velocity of the object

d) the maximum acceleration of the object

e) the displacement, velocity and acceleration, after 0.5 s, if
the object starts from the limit of oscillation at x = A.
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UNIT 2: Oscillations and waves

a) Frequency

o f= % State the relationship to be used

o f= ﬁ = 0.42 Hz Substitute in known values and solve, giving the units

b) Angular frequency

° w=2nf= Z—TT[- State the relationship to be used
°* w= 22—1 = 2.6 rad/s Substitute in known values and solve, giving the units

c) Maximum velocity
* v,=wA State the relationship to be used

_ 2nx 0.11

LA vk 0.29 m/s Substitute in known values and solve, giving the units

d) Maximum acceleration

* g=wA State the relationship to be used
21 \? . . . . .
® g= (2—1) x 0.11=0.75 m s2  Substitute in known values and solve, giving the units

e) Using the cosine equation for displacement, after 0.5 s
® x =Acos(wt) State the relationship to be used
® x=0.11 x cos (2_11)( 0.5)
2.4
= 0.11 x cos(1.31)

=0.11 x 0.259 = 0.028 m
Substitute in known values and solve, giving the units

The use the appropriate equation to find the velocity, in this case:
® v =-wAsin(wt)
2mn .
® v=- (ﬁ)x 0.11 x sin(1.31)
2mn
=- (2—4)>< 0.11 x 0.966
=-0.28 m s™

Substitute in known values and solve, giving the units

Finally use the defining equation for SHM to find the acceleration.

® g =-wAcos(wt) State the relationship to be used
21 \? 2

® a=- (_n) x 0.11 x cos (—nx O.5)= -0.20 m s?
2.4 2.4

Substitute in known values and solve, giving the units
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UNIT 2: Oscillations and waves

How does velocity depend on displacement?

We already know that the velocity is zero when x = +A at the limits
of the oscillation, and that it has its maximum size of v, = wA when
the mass passes through the equilibrium position.

To get a general expression we need to use a trigonometric identity:
* sin*O+cos?B=1
If v=-wAcos(wt) wehave v =w?A%cos*(wt)
If x=Asin(wt) we have w*x? = w?A%sin?*(wt)
and so
P2+ wx? = wA%cosP(wt) + w?A%sin*(wt)
Y+ w2 = wA?[cosP(wi) + sin*(wt)]
¢ V+wx?=wA’x 1
¢ V4 Xt = w?A?
e P =wA’- wix?
o y=ztoVA2- ¥

This equation shows us that at any given displacement (x) an
oscillating object may have +/- a specific velocity. This is easy to
explain.

maximum
displacement

O

N === s = -
N=========

-
-

Figure 2.15 As part of any oscillation the mass will pass through the
same point twice.

If you consider a simple pendulum swinging towards its maximum
displacement, on its way up it passes through point Z. It then stops
and swings back through Z in the opposite direction. Therefore at
any given displacement a pendulum bob may have a velocity equal
to +vor -v.

If the displacement is O (i.e. as the mass passes through the
equilibrium position) x = 0. Therefore v = wVA? — x> becomes
v=+wVA? - 0%. This simplifies to v, = twA.
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UNIT 2: Oscillations and waves

How do we calculate the time periods of real
examples of SHM?

In analysing real systems that perform SHM to find their time
period we always follow the same procedure. We imagine the
oscillating mass being displaced from the equilibrium position by
displacement x and analyse the forces acting on it as a function of
its displacement.

If the system does perform SHM, this resultant force will be a
restoring force proportional to x:
* F=-kx

where k is a constant of proportionality depending on the
parameters of the system. (This equation can be used as an
alternative definition of SHM.)

If we now apply (from Newton’s second law), we can replace F to
write:
* ma=-kx

k

* a=-—x
m

Comparing this with the defining equation for SHM
* a=-wkx

we see that

This gives us the angular frequency w, and from this we can obtain
frequency f or time period T by

o« 29
s 27

or
L4 T:2_T[
w

What is the time period of a mass-spring system?

Here, we consider a mass m suspended by a spring of spring
constant k. This analysis is complicated a little by the fact that the
spring is already stretched when it is'in the equilibrium position
but, as we shall see, terms that this causes in the equations cancel

out, and the analysis ends up looking like the general analysis above.

At equilibrium the tension in the spring is equal and opposite to the
weight of the mass

s S=W
* kx,=mg

and the resultant force - downwards on the mass is zero.
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Think about this...
It is interesting to note the
time period of a mass spring
system is independent of the
gravitational field strength.
c S=kx
Take a mass spring system to
another planet and the time STy
period of its oscillations will
be the same. | [T UMY
W =mg
W =mg
(a) Spring and mass at (b) Mass displaced x
equilibrium with spring downwards from equilibrium
stretched so that the tension position.. Tension in spring
S in the spring is equal and now greater than the weight
opposite to the weight of the of the mass.
mass.

Figure 2.16 A mass-spring system

When mass isdisplaced x downwards, the tension in the spring,
and hence the resultant force downwards (in the direction of the
displacement), is

© F=W-$

* F=mg-k(x,+x)

* F=mg-kx, - kx

But, since kx, = mg, this is

* F=mg-mg-kx

* F=kx

Newton’s second law tells us that, and so

* ma=-kx

and hence
k

* a=- —Xx
m

Comparing this with the general defining equation for SHM
a = -w’x, and recalling that w = TT[we have

[ (‘02:&
m
, 2m ,’k
_:(D: N
T m
. lquﬂ
2n k
L4 T:2 ﬂ
"%

n Grade 12




UNIT 2: Oscillations and waves

We have of course assumed that Hooke’s law (S = k x extension)
is obeyed. As long as it is, and provided that we can ignore energy
losses in the spring and due to air resistance, the mass—spring
system performs perfect SHM.

If we make the amplitude of the oscillations too large, however, and
we exceed the elastic limit of the spring the above equations are no
longer valid and the time period will probably start to become a
little longer.

What is the time period of a simple pendulum?

A simple pendulum comprises a single mass m, which we treat as

a point mass on a string, length /, (or frictionlessly pivoted rod)
whose mass we ignore. This is clearly an approximation and analysis
of a simple pendulum is made a little more complicated by the need
to make a few more approximations.

To find the time period of a simple pendulum consider the motion
of the bob in a circle radius / about the pivot. We analyse the

forces acting on the pendulum bob for a displacement x alongthe
circular path that the bob follows, which corresponds to an angular
displacement 0, as shown in Figure 2.17. From the definition of
angle measurement, in radians

e 0=2%

/

tension in
string

weight of
pendulum
bob

mg

tension in
string

(a) Pendulum displaced by
angle 0. Note: the pendulum
bob follows a circular path

(b) Free body force diagram
for pendulum bob.

(c) Free body force diagram
with resolved into radial and
tangential components relative
to circular path of bob

Figure 2.17 Angular displacement of a pendulum bob

There are two forces acting on the pendulum bob: the tension

in the string acting towards the pivot and the weight on the bob
acting vertically downwards. Since the motion of the bob must be
at right angles to the string, we know that forces in the direction of
the string, radial with respect to the pivot, cannot contribute to the
acceleration of the bob along its circular path, at right angles to the
string, tangential with respect to the pivot.

If we resolve the weight, mg, of the bob parallel and perpendicular
to the string, as shown in Figure 2.17c, the component mgcos 0

Grade 12
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Discussion activity

Pendulum clocks tend to use
quite large masses. Why?

Figure 2.18 Big Ben in London

‘\i/"\_/’

A simple pendulum A compound pendulum

Figure 2.19 A simple pendulum
vs. a compound pendulum

parallel to the string makes no contribution to the tangential
motion of the bob. The resultant tangential restoring force is the
component of the bob’s weight perpendicular to the string.

* F=-mgsin0

The negative sign tells us that the force is back towards the
equilibrium position. The acceleration of the bob is

F .
* g=_—=—gsinf
- &

Now, we have to make another important. approximation. For small
angles (less than 10°), if we express 0 in radians:

* O=sin0

And so, for small angles of swing
X

* a=-gh=-¢ 7

and so, comparing this to the defining equation for SHM, a = -w’x,
we obtain

. (2TV_ g
(5)-4
. T=2T['\’i
4

It is important to remember what approximations we have made to
arrive at the above expression for the time period. We have assumed
that the mass of the string can be ignored and that the mass can be
treated as a point mass.

For'a pendulum where the bob is small compared to the

length of the string but has a much greater mass, this is a good
approximation. If these assumptions are not valid, then we have

a compound pendulum, that requires a different approach, but
motion'is still SHM. If the angular amplitude of oscillation is not
small the approximation that 8 = sin 0 ceases to be valid and the
motion, though still periodic, ceases to be SHM. As the amplitude
increases, the restoring force for larger displacements will become
less required for SHM and the time period will increase.

Big Ben, a famous clock in London, England, has a very large
pendulum and the bob has a flat top. Very fine adjustments can be
made to its period by adding coins on top of the bob. How does this
work?

For a compound pendulum (such as a swinging metre rule) the
time period is better expressed using the relationship:

o T=2m4| 1

mgL
where
I = moment of inertia of pendulum
m = mass of pendulum

L = distance from the pivot to the centre of mass of the pendulum.

Grade 12



UNIT 2: Oscillations and waves

- - DID YOU KNOW?

When we analyse radial
forces acting on the
pendulum bob, the tension
in the string is only equal
to mgcos 6 when the bob
is at the limit of its swing.
u When the pendulum bob
is swinging at velocity v in
a circle of radius /, there is
a centripetal acceleration
towards the pivot and hence

a resultant centripetal force:
. mvy?
Tension — mg cos 6 = —

_— l
oscillating
clamp 258
________________________________
Q ruler, beam, rod “_"“““"“_-______'
Figure 2.20 Further examples of systems that perform SHM
Forced oscillations and resonance KEY WORDS
A free oscillation occurs when an oscillator is displaced from its free oscillation when a
equilibrium position and released so that it can oscillate freely, with | body is displaced from its
no external forces acting on it. equilibrium position and

allowed to oscillate without

any external forces acting on
Forced or driven oscillations occur when a periodic driving force it

acts on an oscillator. This will make the oscillator oscillate at the
frequency of the periodic driving force rather than at its natural
frequency. As long as the frequency of the periodic driving force is
not the same as the oscillator’s natural frequency, the amplitude of
the oscillations is usually relatively small:

The oscillator then oscillates at its natural frequency.

periodic driving force a force
of constant frequency acting
on an oscillator

resonance the tendency of
a system to oscillate with

If the frequency of the periodic driving force is the same as the larger amplitudes when the
oscillator’s natural frequency, energy is transferred easily into the frequency of the periodic
oscillation and the amplitude of the oscillation becomes large, driving force is the same as
sometimes very large. : the natural frequency of the
This phenomenon is called resonance. Resonance occurs when: oscillator
. resonant frequency the
f=1 natural frequency of an
where oscillator

f = driving frequency
f, = natural frequency of the system.

The natural frequency of the oscillator is often referred to as the
resonant frequency. A plot of driven amplitude against driving
frequency peaks at the resonant frequency, as shown overleaf in
Figure 2.21.
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DID YOU KNOW?

In 1940, the Tacoma
Narrows Bridge in the USA
collapsed within 6 months
of being opened after the
way the wind flowed over it
caused a periodic twisting
that ripped it apart. At the
time, it was the third longest
suspension bridge in the
world. This is sometimes
described as being classical
example of resonance,

but this isn’t quite true.
Simple resonance was
already well understood by
the bridge designers. The
catastrophic vibrations that
destroyed the bridge were
due to a more complicated
phenomenon known as
aeroelastic flutter. Lessons
learnt from the collapse of
the Tacoma Narrows Bridge
have affected the designs
of suspension bridges ever
since.

Figure 2.23 The Tacoma Narrows
Bridge just before its collapse.

Amplitude of oscillation / M s

fo Frequency of periodic s
natural frequency of/ driving force / Hz
driven oscillator

Figure 2.21 This plot of driven amplitude against driving frequency
peaks at the resonant frequency.

This can be demonstrated using the experimental setup shown in
Figure 2.22. The vibrator moves the top of the spring up and down
with small amplitude, providing a periodic driving force, with the
frequency being set by the signal generator. If the frequency of the
signal generator is varied slowly, small oscillations of the mass are
observed except at the natural frequency of the mass—spring system,
when the oscillations become very large.

vibrator . )
L sine wave signal generator

n (variable frequency)

spring

(vibrator mounted
on rigid stand)

mass

Figure 2.22 Experiment to demonstrate resonance

If you've pushed someone on a swing you will be familiar with
providing a driving force at the natural frequency of the oscillator. If
you stand behind the swing and give a small push just as it reaches
the limit of the backward swing you are, by taking your timing from
the swing itself, naturally pushing the swing at its natural frequency
and, with just gentle pushes, you can quickly build up a large
amplitude.
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If you try pushing the swing at any other frequency, higher or lower,
you will find it much harder work to cause even a small amplitude
oscillation.

Resonance occurs in many man-made machines and structures. For
example, car engines, or unbalanced wheels will create a periodic
driving force affecting the whole car, the frequency of this driving
force will increase with the car’s speed. If this frequency becomes
the same as the natural frequency of some part of the car that can
oscillate, then that oscillation can become very large, and can be the
cause of annoying rattles that occur at specific car speeds.

If resonance does occur, the large amplitude oscillations can cause
damage. Bridges can collapse or at least oscillate violently, driven
by wind or the regular pace of people walking across them. Troops
of marching soldiers often stop marching and walk across bridges
out of step to avoid causing this. One way to reduce the effects of
resonance and its potentially damaging effects is to design machines
so that, if they do oscillate, the natural frequency and the frequency
of any periodic driving force are never the same.

A washing machine is a good example of this. The drum that the
clothes go into is suspended on springs and can oscillate as a mass—
spring system. During the wash cycle the drum revolves slowly; at a
rate well below any natural oscillation frequencies, but during the spin
cycle the high speed rotation, particularly if the load is unbalanced,
could cause a lot of vibration. Most washing machines have a large
mass, sometimes made from concrete, strapped to the drum. This
extra mass lowers the natural frequency so that it is well below any
driving frequency caused by the high speed spin. Sometimes the
machine will vibrate violently but very briefly when it starts to spin as
the rotation rate passes through the natural frequency.

Damping of oscillations

Another way to reduce oscillations is to introduce damping forces.
Damping forces are resistive, energy dissipating, forces that oppose
motion by always being in the opposite direction to the velocity.

Air resistance and friction are typical examples of damping forces
and are the reason why pendulums naturally stop swinging and
masses on springs stop oscillating.

The damping force is given by:
* F,=—-by
where

b = the damping coefficient and is dependent on the medium
providing the damping

v = the velocity of the object through the medium.

This equations shows how the resistive force is directly

proportional, but opposite, to the velocity. As a result the amplitude

of the oscillation will decay exponentially, as shown overleaf in
Figure 2.25 (a). Note that the period of the oscillation does not

Grade 12

Figure 2.24 Glasses can be made
to shatter if they vibrate at their
resonant frequency

KEY WORDS

damping forces resistive
forces that oppose the motion
of an oscillator by acting in
the opposite direction to its
velocity




UNIT 2: Oscillations and waves

Discussion activity

Once a suspension bridge has
been built it is very difficult to
change its natural frequency of
oscillation. Why?

KEY WORDS

overdamping damping that
prevents oscillation entirely
and only allows the oscillator
to return slowly.to its
equilibrium position

Identify the type of damping
in the following cases and
justify your answer.

a) Pendulum in air
b) Pendulum in water

c) Pendulum in thick treacle

change as the amplitude gets smaller. Heavier damping causes a
more rapid decay of amplitude as shown in Figure 2.25(b).

(a)
Displacement / m light damping
‘‘‘‘‘ -/X__{_/amplitude /m
0 \/ 7\\/‘7\-\-;'7\';‘;2\---- — Time (S)
(b)
Displacement / m heavier damping
el amplitude / m
I\
0 \/ V/\‘;‘;’—- Time (s)
(c)
Displacement / m
\ critical damping
Time (s)
(d)
Displacement / m
\ over damping
Time (s)

Figure 2.25 Plots of displacement against time for an oscillator that is
displaced and then released, for different amounts of damping.

An example of deliberate damping can be found in a car suspension
system. A piston inside cylinder, as shown in Figure 2.26,
containing viscous oil can move but the faster it moves the greater
the resistance to movement. If such damping is very heavy it can
prevent oscillation altogether, so that if the ‘oscillator’ is displaced
it can only return very slowly to the equilibrium position. This is
known as overdamping and is shown in Figure 2.25(d).

fixing points

piston cylinder

)l

©

Figure 2.26 A simple viscous damper. The piston can move inside the
cylinder but the faster it moves the greater the resistance to movement.
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Damping in a car suspension is not normally so heavy, as this would

produce a very ‘hard’ and uncomfortable ride for the passengers.
The damping shown in Figure 2.25(b), on the other hand, would
provide a very bouncy ride; this would be called underdamping.
The damping in a car suspension is always a compromise
somewhere near to the critical damping shown in Figure 2.25(c).
Critical damping is the amount of damping that leads to the
oscillator settling back to a stationary state at the equilibrium
position in the shortest possible time.

Damping reduces the effects of resonance. As the periodic driving
force transfers energy into the oscillator the damping mechanism
dissipates the energy. The resonance peak in the graph of driven
amplitude against driving frequency becomes lower and relatively
wider, as shown in Figure 2.27. It can also be seen that damping
also causes a very small reduction in the natural frequency of the
oscillator.

small amount of damping

large amount of damping

1

1

1

1

1

1

75 Frequency of periodic =
natural frequency of— driving force / Hz

driven oscillator

Amplitude of oscillation / M s

Figure 2.27 Driven amplitude against driving frequency for forced
oscillations of an oscillator with different amounts of damping.

Energy in SHM
Any oscillator performing SHM has energy and the law of

conservation of energy tells us that, in the absence of any external

forces or damping, that energy must be constant even if it may be
changing in form.

When the oscillator is passing through the equilibrium position,

when , the resultant force acting on it is zero and it has no potential

energy but it is moving at the maximum velocity and has kinetic
energy. When the oscillator is at the limit of oscillation, when x =
A, and the velocity is temporarily zero, the kinetic energy must be

zero, but the force acting on the oscillator is at a maximum and the

oscillator’s energy is all stored as potential energy.

Grade 12

KEY WORDS

underdamping damping that
allows the oscillator to move
back and forth through its
equilibrium position before
returning to. rest

critical damping the amount
of damping that allows the
oscillator to return to jts
equilibrium position in_the
shortest possible time
conservation of energy the
total amount of energy in

an isolated system remains
constant.over time
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We know that the kinetic energy at any time is given by
1
e F =— 2
= my

To obtain an expression for the potential energy (PE) of the
oscillator for any displacement x we need to calculate how much
work has been done against the restoring force to move it to that
displacement. We can do using the relationship work equals force
time distance, but we have to take into account that the restoring
force is not one constant value but increases with x.

L 7
F=kx v
I »
f
f

= 7
=z 7
P a
o A
5 AW = FAx D W= Tkt

e ~Displacement / m X

Figure 2.28 Calculation of PE. The work done against the restoring
force in moving the oscillator from the equilibrium position

to displacement x is the area under the graph of force against
displacement.

Figure 2.28 shows how we can calculate the work done. For any
small increase Ax in x the work done is AW = FAx, where F = kx
is the force given by . We can see that this contribution to the total
work done is a portion of the total area under the graph of force
against displacement and that the total work done is the total area
under the graph, and hence

o\ \BE/= %kx2
The total energy at any time is the sum
* Total energy =PE + E, = %kx2 + %mv2

This total energy is equal to the kinetic energy when x =0 and v =
vy» Or to the potential energy when x = A4, i.e.

* Total energy = %mvo2 = %kA2

* Total energy = %mw A?

Note that the total energy of an oscillator is proportional to the
amplitude squared.
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) )

1\ kinetic i

E energy E total energy

1 1

H potential ' E=E +PE
! energy. [

: :

H H E = 1/ mv2
i 1 K 2

i i

: A
i ! PE=1pkx
i i

1 1

1 1

1 \J

_A 0 Displacement/m 5

Figure 2.29 Variation of kinetic energy and potential energy of an
oscillator with displacement, showing that the sum remains constant

This variation of E, and PE with displacement is shown in Figure
2.29.We can show that these expressions for energy are consistent
with our earlier expression for the value of velocity v for any given
displacement x:

¢ v=wVA*-x Starting with our equation for velocity
s V¥ =w(A’-x) Making v* the subject
¢ V= A- w'x Multiplying out the brackets

As this is a mass—spring system we can substitute in k/m for w%
giving
¢ 2= k A?_ k 2
m m

Substituting v* into our E, equations gives:

1, 1 1
* - - — A2 = 2

Smvi= o k 3 kx
Therefore

* E,=total energy - PE

Worked example 2.3

A block of mass 2.2 kg is attached to a spring with a spring
constant of 40 N/m. It is pulled down a distance of 30 cm. Find
the blocks kinetic energy as it passes through the equilibrium
and determine its velocity at this point.

e Yeae - Lpe
° omv=2 kA > kx
Using the relationship above, but is this case as the block
is passing through its equilibrium position x = 0 so the
relationship simplifies to:

1 2 L
° omv=2 kA

Substitute in known values and solve, giving:
o [, =1%kA*="" x40x0.32=1.8J
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The velocity can then easily be determined using the equation
for kinetic energy:

o F =Ymv

® v=+2E/m Rearrange to make v the subject
o v=+((2x1.8)/2.2)) Substitute known values

e v=13m/s Solve and give the unit

In this section you have learnt that:

¢ Simple harmonic motion (SHM) is a periodic oscillation
of an object about an equilibrium position such that its
acceleration is always directly proportional in size but
opposite in direction to its displacement. The defining
equation is

a=-wx
where

21T
w=2nf= T

® For an oscillator performing SHM:
time period does not depend on amplitude
x = Asin(wt)
v = wAcos(wt)
a = —w?Asin(wt)
Vv = @VA? - x?
® For a mass-spring system 7= 2n \/_%

® For a pendulum T=2n '\/ é

¢ An oscillator will oscillate at its natural frequency if
displaced and allowed to oscillate freely without external
forces and damping.

¢ Forced oscillations occur if an oscillator is driven by a
periodic driving force.

® Resonance occurs when an oscillator is driven at its natural
frequency

¢ Damping forces are opposite in direction to velocity and
dissipate energy, causing an exponential decay in the
amplitude of free oscillations.

¢ Damping reduces the amplitude of driven oscillations,
reducing the effects of resonance

e Total energy = PE + £, = %kx2+ %va

¢ The total energy of an oscillator is proportional to amplitude
squared.
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Review questions

1.

An object moving with simple harmonic motion has an
amplitude of 3 cm and a frequency of 30 Hz. Calculate:

a) the time period of the oscillation,

b) the acceleration in the centre and at the maximum
displacement of an oscillation, and

c) the velocity in the centre and at the maximum displacement
of an oscillation.

How long does a pendulum need to be to have a time period of
1 second? Explain all the approximations and assumptions you
make to carry out this calculation.

A mass of 500 g is suspended on a vertical spring of spring
constant k = 10 N/m.

a) Calculate the frequency at which the mass will oscillate if
displaced downwards a small distance and released.

b) A periodic driving force of variable frequency fis applied
to the top of the spring. Sketch and explain a graph of
amplitude against frequency f for the oscillation of the
mass.

c) On the same axes, sketch a graph of amplitude against
frequency f for the oscillation of the mass if a relatively
large piece of cardboard is taped horizontally to the mass.

d) On the same axes, sketch a graph of amplitude against
frequency f for the oscillation of the mass if its size is
increased to 1 kg.

A simple pendulum has a length of 1.2 m and the bob has a
mass of 800 g. The pendulum swings with an amplitude of 14
cm. Calculate: '

a) the velocity of the pendulum bob at the centre of its swing

b) the kinetic energy of the pendulum bob at the centre of its
swing '

c) the kinetic energy and the potential energy of the
pendulum bob when it is 8 ¢cm from the centre of its swing.

Describe the key features of the different forms of damping the
general effect of damping on resonance.
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Figure 2.30 Waves on water

KEY WORDS

direction of propagation the
direction-in which energy'is
transferred along a travelling
wave

mechanical wave a wave that
involves the oscillations of
particles of a physical medium

2.2 Wave motion

By the end of this section you should be able to:

e Describe the characteristics of a mechanical wave and
identify that the speed of the wave depends on the nature
of medium.

e Use the equation v =+ T/u to solve related problems.

e Describe the characteristics of a travelling wave and derive
the standard equation y = Acos(wt + @)

e Define the terms phase, phase speed and phase constant
for a travelling wave.

¢ Explain and graphically illustrate the principle of
superposition, and identify examples of constructive and
destructive interference.

¢ Identify the properties of standing waves and for both
mechanical and sound waves, explain the conditions for
standing waves to occur. Including definitions of the terms
node and antinode.

¢ Derive the standing wave equations.

¢ C(alculate the frequency of the harmonics along a strong, a
open pipe and a pipe closed at one end.

¢ Explain the modes of vibration of strings and solve
problems involving vibrating strings.

e Explain the way air columns vibrate and solve problems
involving vibrating air columns.

* Analyse, in quantitative terms, the conditions needed for
resonance in air columns, and explain how resonance is
used in a variety of situations.

e Identify musical instruments using air columns, and explain
how different notes are produced.

What is a travelling wave?

Electromagnetic and sound waves are particularly important to us,
but waves on water are a little easier to observe. If we drop a pebble
into a pond we see small waves or ripples radiating outwards.

If dip a stick into the middle of the pond and move it up and
down with SHM the motion becomes continuous. These waves are
spreading out in two dimensions and sound and electromagnetic
waves spread out in three dimensions, but for the moment, we
will simply consider waves travelling in one dimension. We will
later consider stationary, or standing, waves, but first we need to
understand a little about travelling waves.

A travelling wave transfers energy, and sometimes information,
from one place to another, in what is called the direction of
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propagation. An oscillation at the source of energy causes an
oscillation to travel through space. For electromagnetic waves this
oscillation is of electric and magnetic fields and does not need a
medium. In a mechanical wave that involves the oscillations of
particles of a physical medium, as the particles pass on energy, they
undergo temporary displacements but no permanent change in the
position. For example, when ripples travel across a pond the water
molecules oscillate vertically but do not move in the direction of the
wave.

Transverse and longitudinal waves?

————= Transverse wave travels along slinky with velocity v (v = ). ———=> Longitudinal wave travels along slinky with velocity, v (v.= fl).

Hand (H) oscillates from side to side with SHM, period = T, amplitude = A.

NIIIIIIIIMIIIIIIIIIIIIIIIHI Q0000000000000
A QSUAAAOS N NS N N N NN N NN NN NN NN
N A'B C D
Hand (H) oscillates back and, forth with SHM, period = T, amplitude =,

A snapshot of a longitudinal wave travelling along a slinky. Each point on the wave
oscillates back and forth with the same amplitude A and frequency f. The frequency

of oscillation and'the period are related in the same way as they are in SHM, f = 1/T.
The phase of the oscillations varies along the wave: Points which are a distance | apart
oscillate in phase; while those which are a distance |/2 apart oscillate antiphase.

A snapshot of a transverse wave travelling along a slinky. Each point on the wave oscillates  Point.B on‘the wave is at a point of compression - the points to the left of B are

from side to side with the same amplitude A and frequency f. The frequency of oscillation displaced to the right of their equilibrium position, while those to the right of B are
and the period are related in the same way as they are in SHM, f = 1/T. The phase of the displaced to the left of their equilibrium'position. The reverse is true of point D, which
oscillations varies along the wave. Points which are a distance | apart oscillate in phase, is at a point of rarefaction — the points'to the left of D are displaced to the left of their
while those which are a distance |/2 apart oscillate antiphase. equilibrium position, while those to the right are displaced to the right of their

equilibrium position.

Figure 2.31 Waves along a slinky

We can demonstrate a wave travelling along a stretched slinky; as

shown in Figure 2.31. We can create two distinctly different types KEY WORDS

of travelling wave. transverse wave wave

A transverse wave is one in which the oscillation, the temporary where the oscillations are
displacement of mass or field strength, is at right angles to the perpendicular to the direction
direction of propagation. Electromagnetic waves and waves of wave motion

travelling along a string or rope are examples of transverse waves. longitudinal wave wave
Waves on water can appear to be transverse if the amplitude is where the oscillations are
small, but in reality they are more complicated and involve the parallel to the direction of
water moving in circles. wave motion

Transverse wave

amplitude wavelength , peak

direction of wave
direction of propogation

'Ilationt \

Figure 2.32 A transverse wave

A longitudinal waye is one in which the oscillation, the temporary
displacement of mass, is backwards and forwards along the path of
wave propagation/net energy transfer. Sound is a longitudinal wave.

Grade 12 81




UNIT 2: Oscillations and waves

Worked example 2.4

If a sound wave with a
frequency of 500 Hz passes
through a liquid at a speed
of 1500 m/s, then its
wavelength must be

"4
[ ] k:—
f
1500
4 X—W—Z’;m

KEY WORDS

tension a measure of the
force tending to stretch a
string

mass per unitlength a
measure of the distribution of
the mass of a string along its
length

linear /density a measure of
mass perunit length

phase speed the rate at
which the phase of the wave
travels through'spa

Longitudinal wave

direction of wavelength direction of
oscillation wave _
propogation
— —
compression

rarefaction

Figure 2.33 A longitudinal wave

A wave is carried by a chain of oscillators, each passing on its
energy to the next oscillator. Hence, just asthe energy of a single
oscillator is proportional to the square of the amplitude of the
oscillation, the power or rate of energy transfer of a wave is
proportional to amplitude squared.

Wave speed

The frequency of a wave can be defined in two equivalent ways.

It is the frequency of the individual oscillators that pass the energy
along, the number of times particles go up and down or backwards
and forwards per second.

It is also the number of complete waves, the number of wavelengths
that pass any given point per second. If the wavelength is A, and
fwavelength pass a point per second, then the speed of the wave
must be given by the wave equation:

f U2 N

Wave speed through different media

The speed of any travelling wave depends on the media it is
travelling through (more on the speed of sound in chapter 2.3).

For a mechanical wave travelling along a string the speed of the
wave depends on the tension of the string and the mass per unit
length (sometimes called linear density).

[T

where ¢

¢ = mass per unit length given by y = % in kg/m
T = tension in the string in N.

The formula given above shows us that the ‘tighter’ the string the
faster the waves will travel down its length. Additionally the ‘lighter’
the string, (the smaller its mass/length ratio), the faster the waves
will travel down its length.

The phase speed of a wave is the rate at which the phase of the wave
travels through space. Any given phase of the wave (for example,
the crest or the trough) will appear to travel at the phase velocity.
The phase velocity is given in terms of the wavelength A (lambda)
and period T as

Vphase = >\ / T
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UNIT 2: Oscillations and waves

How do we describe a travelling wave
mathematically?

An oscillation at the source causes a travelling wave, which causes
oscillations along its path. A mathematical description of the wave
must give an expression for the temporary displacement Y at any
distance x along the path of the wave at any time ¢.

If a wave is sinusoidal, then a snapshot of the wave, i.e. a side view
at an instant in time, looks as shown below in Figure 2.34(a). If the
wave now travels on from the position shown it causes particles

to oscillate with SHM at points A and B but, because the wave has
to travel a quarter of a wavelength further to reach point B, the
oscillation at point B always lags behind that at point A by quarter
of a cycle, 11/2 radians, as shown in Figures 2.34 (b) and (c).

If points A and B were half a wavelength apart than the oscillation
at B would lag half a cycle, n radians, behind that at A. If A and B
were a whole wavelength apart that the oscillation at B would be

a whole cycle behind that at A and therefore be effectively back in
step with it.

(@) |temporary displacement

of mass/field strength
due to the passing wave

propagation of wave at velocity v
y/m

/N /N

| A |

\/ displacement in
direction of wave

propagation x/m

(b) |temporary displacement
of mass/field strength at A
due to the passing wave

time at point A
y/m

\/ time at
time period point A t/s
| |

T

(c) |temporary displacement
of mass/field strength at'B
time at'point B

due to the passing wave
yim /-\
\/ time at
time period point B t/s
| T |

Figure 2.34 shows a series of snapshots of the travelling wave at
successive instantsin time, quarter of a cycle apart. At time ¢ = 0,
the wave is a sine wave described by the equation

* Y=A4sin(2 f)
Sln(T[}\

When ¢ = %, the wave has moved a quarter of a wavelength to the
right and is described by the equation

Grade 12

Figure 2.34 A side view of a
transverse wave at a single instant
in time. As the wave is sinusoidal,
the wave causes particles to
oscillate with SHM at points A
and B. Over time there is a phase
shift, this does not change the
shape of the move but moves it
back and forth along the x-axis.




UNIT 2: Oscillations and waves

s Y= Asin(ZTtﬁ - E)
A2

We can confirm that this is the correct expression by checking the
values that this gives.

When x = 0 sin (2T[£— E) = sin (——) =-1
A2

A x 7 . 1/ .
When x = =, sin (27[———) = sin (27[—-_») =sin (0) =0
4 A2 4 2 ©

and so on.
When ¢ = %, the wave has moved a half of a wavelength to the right
and is described by the equation
* Y=Asin (27[ X T[)
A
In general, after time #:

© Y= Asin (2nﬁ—2ni)
A T

or
* Y=Asin (27[% 3 Znﬁ)

This is a very useful description. By substituting in a value of x
for the position of a point along the wave’s path, we can obtain
an expression for the oscillation at that point, or by substituting
in a value for ¢ at a particular instant we can obtain an expression
describing the shape of the wave at that instant.

Y

propagation of wave at velocity v

D
D
D

S

i
4

Y. A

A
L/

Dl ¢
D ¢
D

x

t=

/N

N

N\
N /N

™

C

37
4

N\
Y
N

Figure 2.35 A travelling wave shown at a series of successive times

D,
V) ¢
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>
Dl ¢
| ¢

C
/
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UNIT 2: Oscillations and waves

Just like SHM it does not really matter whether a sine or cosine
function is used to describe the travelling wave. A cosine version of
the travelling wave equation may be seen below:

* Y=Acos(wt+ )

In this equation ¢ is the phase constant of the wave, this effectively
moves the waves back and forth along the x-axis.

Principle of superposition

If two or more waves pass through a single point then the resultant
instantaneous displacement at that point is the sum of the
displacements that would be created separately by each wave, taking
signs into account. The waves pass on through the point and each
other and continue on unaffected. This works for two waves passing
through each other at any angle, as shown in Figure 2.36, and for
waves passing through each other in opposite directions along a
string, as shown in Figure 2.37.

X=—

_/\—‘\_L_
X=—
— A

«V\\x—»
-—Y X=—

VD W 4 W

(a) Pulses of the same sign
crossing.

(b) Pulses of opposite sign
crossing

Figure 2.37 Pulses passing through each other going in opposite
directions along a string and demonstrating superposition as they cross

Constructive and destructive interference

Interference is another word for superposition. When two

waves arrive at the same point they interfere with each other:

the instantaneous displacement at that point is the sum of the
displacements that would be created separately by each wave. If we
consider just two waves, the result is an oscillation whose amplitude
depends on the relative phase of the two waves.

The phase difference between two oscillations is an angular
measurement of the difference in their timing, best understood by
thinking about the circular motion link to SHM shown in Figure
2.11. Since a whole cycle involves an angular change of 2 radians,
a half cycle difference is a phase difference of , and a quarter cycle
difference is a phase difference of 1/2.

If the two waves are causing independent oscillations that go up and
down, and pass through the equilibrium point at the same times, as

shown overleaf in Figure 2.38, they are said to be in phase with each
other.

Grade 12

wave X

wave Y

Figure 2.36 Two waves, X and

Y, pass through-each other
unaffected, but the instantaneous
displacement at point P is the
sum'of the of the displacements
that would be created separately
by each wave.

KEY WORDS

phase a measurement of the
position of a point on a wave
after a particular time. Two
sine waves are said to be in
phase when corresponding
points of each reach maximum
or minimum displacements at
the same time.

phase difference the angular
difference in timing between
2 waves




UNIT 2: Oscillations and waves

KEY WORDS

antiphase where two sine
waves are performing the
opposite motion to each other.
The phase difference between
them is 180 degrees.

constructive interference
the production of large
oscillations by the
superposition of two waves
that are in phase with each
other

destructive interference the
cancelling out of oscillations
caused by the superposition
of two waves that are in
antiphase

Think about this...

Waves at sea are caused by
the action of wind on the
surface of the water. In big
oceans on a calm day you see
big waves that have travelled
thousands of kilometres from
a storm centre thousands of
kilometres away. Sometimes
these waves are nice and
regular. Sometimes you can
experience a very irregular
pattern of waves getting
stronger and weaker and very
difficult to predict. Why is
this?

If they are always performing completely the opposite motion to
each other, as shown in Figure 2.38, they are said to be completely
out of phase, 180° or n radians out of phase with each other, or in
antiphase.

If two oscillations are in phase with each other we get constructive
interference giving a large amplitude oscillation.

temporary displacement of mass/field strength
at point P due to the passing wave X

N AN AN
\/ \/ \/ time at point P

temporary displacement of mass/field strength

at point P due to the passing wave Y
\/ \/ \/ time at point P

total temporary displacement of mass/field strength
at point P due to combined effect of passing wave X'and Y

AR CAAN
ANy i

Figure 2.38 Constructive interference: two oscillations in phase
with each other combine to produce a larger oscillation at the same

frequency:.

If the two oscillations are in antiphase we get destructive
interference or cancellation leading to a small or zero resultant
oscillation. Note that we only get complete cancellation if the two
oscillations are in perfect antiphase and have the same amplitude.

temporary displacement of mass/field strength
temporary displacement of mass/field strength

at point P due to the passing wave X
at point P due to the passing wave Y
total temporary displacement of mass/field strength

\/ \/ \/ time at point P
/\ /-\ /\ time at point P
at point P due to combined effect of passing wave X and Y

time at point P

Figure 2.39 Destructive interference: two oscillations in antiphase
cancel each other to produce a small or zero resultant oscillation.

Grade 12



UNIT 2: Oscillations and waves

Reflections of waves

When a travelling wave reaches a sudden change in medium it will
be at least partially reflected. In some circumstances this reflection
can be total. When a wave travelling along a string reaches the end,
it will be completely reflected if the end of the string is either firmly
clamped so that it cannot move at all or if the end is completely free
to move. If the end of the string is connected to a second string of
different mass per unit length, some energy will be reflected and
some will be transmitted on along the next string.

If the end of the string is fixed so that it cannot oscillate at all, then
the sum of the incident and reflected wave must be always zero and
so the reflected wave must be in antiphase. The reflection includes
a phase shift of  radians. If the end of the string is completely free
to move, we still get 100% reflection, but with no phase shift. The
same rules apply to sound waves in narrow tubes, as in musical
instruments. Where the end of the tube is closed there is no net
oscillation and the sound wave is reflected with a phase shift of

n radians; where the end of the tube is open there is a large net
oscillation and the sound wave is reflected with no phase shift.

(a) reflection from a fixed end with a 180° phase shift

incident wave

-~s -\s - — ,—"~\ e
~ ~ 4 N 4 N ’
. . 7 . e . # .
AN N N % 7 fixed end
AN A% :( ¢ allowing'no
‘\\ R RERN MR net oscillation
N ,' ‘\ S \s ,' \\
~ -~ ’, ~ ~ P -~ ’ ~ ~
Sm= <— - Se=7 ~
reflected wave
(b) reflection from a open end with no phase shift
reflected wave incident wave
- . 4—’ - t~_> M Pid
- 4 Sa 47
. 5' Sy ‘/ .
R K N 4 fixed end
A - - -- allowing no

net oscillation

Figure 2.40 Reflections at the end of a string, or air column

Standing waves on strings

Musical instruments use standing, or stationary, waves, either on
strings or inair columns, to generate sound at different frequencies.
If a string is fixed at both ends and it is plucked, or has a bow
drawn across it, then waves will travel away along the string to be
reflected at the ends. This produces waves travelling in opposite
directions along the string and they will interfere with each other.
The waves that travel away from the initial point of plucking will

be at a wide range of different frequencies, and for most of these
frequencies the reflections will never interfere constructively with
each other and they will disappear. At some specific wavelengths
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UNIT 2: Oscillations and waves

however, depending on the length of the string, the waves travelling
in opposite directions will interfere to produce a standing wave,

as shown in Figure 2.41. If we can observe the oscillation of the
string, which can be done using high speed photography or using

a stroboscope, we do not see travelling wave but a wave shape that
stays in one place, a stationary, or standing, wave. |

t=0
e ==~ TS EE A an o il Rl e
=1
=3
e TN et TN w
l’ N ~\ ” «A ~\ ~\ A’
o7 N ~ X4 D ~ (4
. ~ N —:><:- -—_¢ ~~~- 3a% /]
=TI
t= :
3r
("%
e TR AN N R »
- P *‘~\ S - - . "‘ ~‘\ \;~~ ”l
-7 “~._ _:>='_ _," ~*~_ _:a:_ /-
=TI
=3
=~ e T el PPLE LTSN L=
=7
t—s -l - - -
'y Lo PN al 2N Jep AN 0
N A N A e
t=37
4 <=, e
-0
t=7% o~ o~
Figure 2.41 Formation of a stationary wave |*~. =<1/ .- N\~ .-/ .->"*..\]
by superposition of two waves of equal N A SN e A e
amplitudes and wavelength travelling in
opposite directions . The red and blue waves
are the two travelling waves, which we (=7
. . i T vk REIO PP e L cE P ==
do not see in reality. The black line is the ot St St ot
) PAAN PO PEES S
standing wave that we do see. JUPCIASER N B S PP N PP

Grade 12




UNIT 2: Oscillations and waves

At points where the wave travelling to the right and the wave

) ) ) KEY WORDS
travelling to the left are always in antiphase, as at the fixed ends, .
superposition produces no net oscillation. These points are called node§ the points where two
nodes. There are positions however where the two waves are always | SUper imposed waves are i
in phase with each other and here superposition produces large an t{pha.se and there is no net
oscillations. oscillation

antinodes the points where
two superimposed waves are'in
phase and the net oscillations
are largest

The points where the two waves are always perfectly in phase and
the net oscillations largest are called antinodes, as shown in Figure
2.42. All points of the string between any two adjacent nodes, half a
wavelength, oscillate in phase with each other.

Antinodes (a) - points where amplitude of oscillation is greatest

resultant wave

-~
~ S

Nodes (n) - points where amplitude of oscillation is zero

Figure 2.42 Nodes and antinodes on a stationary wave. The distance
between two successive nodes and antinodes is half a wavelength.

Adjacent half wave length sections are in antiphase with each other,
as shown in Figure 2.43.

o>

All particles in the string in sections A oscillate | All particles in the string in sections B oscillate
in phase with each other - those in the centre | in phase with each other - those in the centre
with the biggest amplitude with the biggest amplitude

Particles in section A oscillate in anti-phase with particles in section B, i.e. their oscillations have
a phase difference of m or 180°.

Figure 2.43 Oscillations in different sections of a stationary wave

Grade 12 n




UNIT 2: Oscillations and waves

The location of nodes and antinodes are very important.
* Nodes occur when the distance along the string is equal to nA / 2

* Antinodes occur when the distance along the string is equal to
(n+%) N/ 2.

Where n = an integer number 0, 1, 2, 3, etc.

The mathematics of standing waves

Two travelling waves moving in opposite directions canbe
represented by the equations below:

* ¥, =y,sin(kx - wt)

and

* ¥, =y, sin(kx + wt)

where

¥, is the amplitude of the wave,

w is the angular frequéncy measured in radians per second (we
could use 2nf instead),

k is equal to 27t / A (as seen in the trayelling wave equations
discussed earlier)

x and tarevariables for position and time, respectively.

So the resultant wave y equation will be the sum of y, and y,:
* y=y,sin(kx - wt) +y, =y, sin(kx + wt)

We can use a trigonometric identity to simplify this to:

* y=2y,cos(wt) sin(kx)

This equation shows not only that the wave oscillates in time, but
has also these oscillations vary in the x direction. That is as you
move further along the wave (in the x direction) the oscillations
vary. Several maxima occur at x = \/4, 3A/4, 5\/4, these are the
antinodes.'Where as at x = 0, A/2, A, 31/2, the function is zero and
so the amplitude is always zero — these are the nodes.

Wavelength and the length of string

A standing wave happens if the distance for a wave to travel in

a complete circuit, from one point to one end, back to the other
end and finally back to where it started, is a whole number of
wavelengths. We get stationary waves if the length of the string is a
whole number of half wavelengths, i.e. we get stationary waves if

o2
A
where L is the length of the string and # is an integer, or when
. }\ = %
n
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UNIT 2: Oscillations and waves

Using velocity v = fA we can show that we get standing waves on the
string when

. vV _2L
f n
or

o f_, ¥
f=n3r

f = 5f,

L=3

Figure 2.44 Modes of vibration of a string fixed at both ends

Figure 2.44 shows the standing waves that can be formed on a string
fixed at both ends for values of # from 1 to 5. The lowest frequency
of oscillation, when A = 2L and there is just one antinode is known
as the fundamental frequency;, f,. All the other possible oscillation
frequencies are integer multiples of this fundamental frequency
and are known as harmonics. For example, the oscillation at 2f, is
known as the second harmonic, that at 3f, as the third harmonic,
and so on. The first harmonic is the fundamental frequency. The
harmonic number is the same as the number of antinodes. A string
does not necessarily oscillate at only one of these frequencies; it can
oscillate at several different harmonic frequencies at the same time.
The resulting shape of the oscillating string can look quite complex.

Grade 12

Worked example 2.5

What frequencies can a
string vibrate at if it is 30
cm long and the velocity of
travelling waves along the
string is 120 m/s?

The fundamental frequency
is given by:

:
° f1=”ﬁ
120
*h=3%03
e f =200 Hz

Therefore the string can
vibrate at 200 Hz, 400 Hz,
600 Hz, 800 Hz, 1000 Hz,
1200 Hz, etc.

harmonics standing waves for
which frequencies are integer
multiples of the fundamental

frequency




UNIT 2: Oscillations and waves

Think about this...

The number of antinodes may
be used to quickly determine
the harmonic. The second

harmonic has two antinodes,
the third harmonic three, etc.

Figure 2.45 Guitar strings have
different thicknesses (and so mass
per unit length is different) plus
their tension may be altered to
produce different notes.

DID YOU KNOW?

Strings or parts of strings
on a string instrument

may resonate at their
fundamental or harmonic
frequencies when other
strings are sounded. For
example, an A string at 440
Hz will cause an E string at
330 Hz to resonate, because
they share an overtone of
1320 Hz (3'¢ harmonic of A
and 4th harmonic of E).

The fundamental frequency of a string is clearly determined by its
length, but it also depends on the velocity at which travelling waves
travel along the string. As we have already shown this velocity is
given by

,’T
e v= -
U

where T is the tension in the string and g is the mass per unit
length. Hence, the fundamental frequency of a string is given by

NP U
f1_2L 2

and so we can make a string produce-a higher note if we make it
shorter, increase the tension or replace it with a lighter one. These are
the parameters that affect the fundamental frequency that the string

in a musical instrument produces, but the tone, what makes one
instrument sound so different from another arises from the harmonics
that are produced at the same time as the fundamental. If a string is
tuned to the musical note A (above middle C), then this means that it’s
fundamental frequency is 440 Hz. But it will also be producing sound
waves at the harmonic frequencies 880'Hz, 1320 Hz, 1760 Hz, etc. It

is the relative amplitude of these harmonics that determines the tone
of the note, and this depends on the detailed design of the musical
instrument-and how the stringis plucked or bowed.

These frequencies of oscillation can be thought of as resonant
frequencies. If a sound wave hits the string at one of these
frequencies, perhaps coming from another string, it will start to
vibrate at that frequency. This is called a sympathetic vibration.
When we cause a string to vibrate at a particular resonant
frequency, we say that we have excited the corresponding resonant
mode of vibration. A key difference from oscillators like pendulums
and mass-spring systems is that while those oscillators have just one
resonant frequency, a string has multiple resonant frequencies: its
fundamental and harmonic frequencies.

Standing waves in organ pipes

Wind instruments generate standing waves in the column of
air inside them. A full analysis of the vibration of the air inside
a wind instrument is much more complicated than for a string.
The vibrating body of air in wind instruments can be varied
and complex in shape, but we can arrive at some very good
approximations if we stick to straight narrow pipes.

A simple pipe will need to be open at one end, but could be open
or closed at the other. Where the end of the tube is closed there is
no net oscillation and the sound wave is reflected with a phase shift
of m radians. There will always be a node at a closed end. Where
the end of the tube is open there is a large net oscillation and the
sound wave is reflected with no phase shift. There will always be

an antinode at the open end. Pipes with one end closed behave
differently from those with both ends open.
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If one end of the pipe is closed, and the other open, we will get 5
anode at one end and an antinode at the other. This creates two DO IO
differences from standing waves on a string. The fundamental
occurs when the length of the pipe is just a quarter of a wavelength,
and only odd harmonics occur, as shown in Figure 2.46. These
diagrams could be slightly misleading as they appear to show the
waves as transverse. The vibration of air in the pipe is actually quite
complex and certainly not simply transverse: diagrams should be
taken as showing amplitude but not direction of oscillation.

A drum skin has different
resonant modes of
vibration, just as a string
does but in two dimensions
rather than one. Where you
hit the drum affects which
modes are excited and
hence the sound the drum
produces.

Worked example 2.6

A narrow pipe is 20 cm long
and is open at the top and
closed at the bottom. Given
that the speed of sound is
340 m/s, what frequency
sounds might it be possible
to produce by blowing across
the top?

The wavelength at the

| fundamental frequency is
Pt 0 B, R C ot four times the length of the
pipe and therefore

Figure 2.46 Resonant modes of vibration for.air in a narrow.column \
with one end closed and one end open. The diagrams show amplitude ¢ A=08m

of oscillation; they should not be taken as implying that the waves are This corresponds to
frequency of

one end open; one end closed - odd harmonics only:

antino

=
~—
~——

Bl< >|< »>

simple transverse waves.
v_ 340

For the nth harmonic: f, = nv/4L'where n = 1, 3, 5, etc. o f= =58 " 425 Hz

If both ends are open, then we get antinodes at both ends. Apart .

from having antinodes at the ends rather than nodes, this produces and 1.:herefore it might be

the same rules for frequencies and harmonics as a string. possible to Produce sounds
A . at odd multiples of 425 Hz,

The fundamental occurs for L = > and all harmonics, odd and i.e. at 425 Hz, 1275 Hz,

even, can be produced: 2125 Hz, etc.

Standing waves can also be created using sound in open air. If two
loudspeakers are set up, facing each other and some distance apart,
playing the same single tone then we have two travelling waves of
the same wavelength travelling in opposite directions. This creates
a standing wave, but if there is any perfect node it can only be at
the centre point between the two speakers, if they are identical and

producing the same amplitude.
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UNIT 2:

Oscillations and waves

DID YOU KNOW?

Reflections of microwaves
off building, mountainsides,
etc., set up standing wave
patterns with nodes or
places where the signal
strength is very weak.

This is one of the biggest
problems to be overcome

in making mobile phones
work.

DID YOU KNOW?

Musicians use the
phenomenon of beats to

help them tune instruments.

If two instruments playing
the same note are slightly
out of tune, they can hear
the beats. If they adjust one
of the instruments closer in
frequency to the other the
beats become slower and
slower and when the beat
disappears altogether the
musicians know the notes
really are the same.

both ends open - lower fundamental frequency, but harmonics:
antinode

node

_..
Il

A
2
\
TN
v
aL

Figure 2.47 Resonant modes of vibration for air in a narrow column
with both ends open. The diagrams show amplitude of oscillation; they
should not be taken as implying that the waves are simple transverse
wave.

For the nth harmonic: f, = nv/2L where n = 1, 2, 3, etc.

At any other point the sound from one speaker will be louder

than from the other and, although a local minimum amplitude

will be produced, the complete cancellation to produce a perfect
node cannot happen. Standing waves can also be created by
directing sound from a single speaker towards a wall, along a path
perpendicular to the wall. The wall reflects the sound wave and this
produces a standing wave but, as the sound spreads out as it travels,
the amplitudes of incident and reflected waves are only similar close
to the wall.

Beats

If two notes, differing in frequency by a few hertz are played at
similar amplitudes, the phenomenon of beats can be heard. The
resulting sound will be at the average of the two frequencies, but

it will get louder and quieter at a frequency equal to the difference
between the two frequencies. This can be predicted mathematically.
If we add two sine waves at frequencies f + Afand f — Af, we obtain:

e sin(2n(f- Af)t) + sin(2n(f+ Af)t) = 2 cos(2nAf t) sin (2nft)

which describes a sine wave, sin (27ft), whose slowly varying
amplitude is given by 2 cos(2nAf t), where Afis half of the frequency
difference between the two sine waves. The result is shown in Figure
2.48. The time between nulls, instants of no sound, is half of the
period of cos(2nAft), and is hence the time period corresponding
to the frequency difference. In other words, if we play two notes at
frequencies f; and f, the resulting sound has a beat frequency of

. J;:|Jz—ﬁ|=TiB
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Temporary displacement/m

M A R et A R
AN VV_V_\[_\[_\[_V,VVV VVWVVVV\IV V\/ U\l Tme /s

Figure 2.48 Beats produced by the addition of two sine waves of the
same amplitude but slightly different frequencies. The resultant sound
is at the average of the two frequencies (red sine wave) but with an
amplitude that increases and decreases at a “beat frequency” that is
the difference between the two frequencies.

In this section you have learnt that:

¢ A travelling wave transfers energy (and information) with no
permanent movement of mass.

e A transverse wave is one in which the oscillation is
perpendicular to the direction of propagation.

¢ A longitudinal wave is one in which the oscillation is along
(parallel to) the direction of propagation.

® Wave speed v = fA.
¢ The travelling wave function is Y= Asin (211% - 2nft).

¢ The principle of superposition states that if two or more
waves pass through a single point then the resultant
instantaneous displacement at that point is the sum of the
displacements that would be created separately by each wave.

¢ The phase difference between two oscillations is the angular
difference in their timing, e.g. a half cycle difference is a
phase difference of m radians.

¢ Constructive interference is the production of large
oscillations by superposition of oscillations due to waves in
phase with each other.

e Destructive interference occurs when oscillations due to
waves are in antiphase with each other, and completely or
partially cancel each other out.

¢ Nodes are points in a standing wave where no oscillation
occurs.

¢ Antinodes are points in standing waves where the amplitude
of oscillation is at a maximum.

A
* The distance between nodes in a standing wave is 5.
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UNIT 2: Oscillations and waves

At a fixed end of a string or closed end of an air column,
travelling waves are reflected with a phase shift of m radians,
giving rise to a node in the standing wave produced.

At a free end of a string or open end of an air column,
travelling waves are reflected with zero phase shift, giving
rise to an antinode in the standing wave produced.

The fundamental mode of vibration of a string or air column
is the standing wave at the lowest possible frequency.

Harmonics are integer multiples of the fundamental
frequency

A string with fixed ends supports standing waves such that
n=L, where L is the length of the string and n is an
integer.

For a pipe with one closed end and one open end the

fundamental mode of vibration occurs for n, =L, and only
odd harmonics can occur.

Review questions

1.

If the speed of sound in airis 340 m/s, what is the wavelength of
a sound wave at 512-Hz?

What is the frequency of red light with a wavelength (in free
space) of 630 nm?

Two sinusoidal waves both have a frequency of 200 Hz. The
amplitude of one is 1 cm, the amplitude of the other is 2 cm.
Sketch graphs of displacement against time for the oscillations
produced by each wave separately and their resultant at a point
P where they cross, if

a) they arrive at P in phase, and
b) theyarrive at P in antiphase.

A travelling wave on a string, of amplitude 2 mm, frequency
500 Hz and speed 300 m/s, can be described by the function

Y = Asin (27:% _ 2nft>

a) Sketch graphs of displacement Y against distance x for this
wave, for the first 1.2 m:
i) fortimet=0,and
ii) for timet= 0.5 ms

b) Sketch graphs of displacement Y against time ¢ for the
oscillation produced by this wave for the first 4 ms

i) at the source where x = 0, and

ii) ata distance x = 30 cm from the source.
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5. A violin string is 32 cm long and has a mass per unit length of
2 g/m. What tension is required for the string to produce an A,
i.e. for its fundamental frequency to be 440 Hz?

6. Imagine that you swinging backwards and forwards on a
child’s swing and you are listening to music coming from a
loudspeaker in front of you. Explain why the music might not
sound right.

7. A pipe, 68 cm long, is open at one end and closed at the other.
When air is blown across the open end sound is produced at
110 Hz.

a) What is the velocity of sound along the pipe?

b) Blowing harder will produce a higher note. What is the next
frequency that the pipe can produce?

8. Inan experiment to measure the speed of sound in air, a speaker
directs sound towards a wall, along a path perpendicular to
the wall. The wall reflects the sound wave and this produces.a
standing wave. A microphone and electronic measuring device is
used to measure the amplitude of the sound at different distances
from the wall. Minimum values of amplitude are detected at
28 cm when the frequency used is 600 Hz.

a) What is the measured speed of sound?

b) Explain why the minimum values of sound are not zero and
why they are more difficult to detect further from the wall:

2.3 Sound, loudness and the human ear

By the end of this section you should be able to:

¢ Define the intensity of sound and state the relationship
between intensity and distance from the source.

e Describe the dependence of the speed of sound on the bulk
modulus and density of the medium. Use v =+ B/p

¢ Give intensity of sound in decibels, and define the terms
threshold of pain and threshold of hearing.

e Describe the intensity level versus frequency graph to know
which the human ear is most sensitive to.

® Analyse resonance conditions in air columns in quantitative
terms.

e Explain the Doppler effect, and predict in qualitative
terms the frequency change that will occur in a variety of
conditions.

e Describe some practical applications of the Doppler Effect.
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KEY WORDS

loudness the audible strength
of a sound, which depends on
the amplitude of the sound
wave

intensity the energy received
by each square metre of a
surface per second

power per unit area the
power received by a square
metre of a surface

Sound loudness and intensity

The loudness of sound is difficult to measure scientifically. How
loud a sound appears depends very on the listener, it is quite
subjective. In general, the louder the sound, the greater its intensity.

Intensity can be defined precisely. Intensity at a point is then energy
flowing through a unit area (1 m?) per unittime (1's). We know
that the energy in an oscillation is equal to the kinetic energy at the
equilibrium position

1

= Emvo2 = %mszz.

The mass of air with a cross section of 1 m?*disturbed by a plane
sound wave each second is the density of air p times the volume
disturbed, and the volume disturbed is 1 m?* time the distance
travelled by the wave each second (its velocity). Hence, the intensity
of a sound wave is given by

I= %pvszz,
where p is the density of the air, v is the velocity of sound, w =
2nf where fis the frequency and A is the amplitude of oscillation.

Hence we see that intensity, measured in W/m?, is proportional to
amplitude squared and to frequency squared.

Sound intensity is defined as the sound power per unit area. The
usual context is the measurement of sound intensity in the air at a
listener’s location. The basic units are watts per m?> or W/m?.

Alternatively the intensity of sound from source can be calculated
assuming the sound spreads out equally in all directions. You may
recall the intensity from a point source is given by:

p

o 1=
A

where
P = power of the source in W

A = area through which the sound is transmitted.

If we assume the sound travels out equally in all directions then the
area covered is equal to the surface area of a sphere. So the equation

becomes:
P P

where r is the distance from the source in m.

You may recall from Grade 9 this is an inverse square relationship,
is you double the distance the sound intensity falls by 4 (22).

Grade 12



UNIT 2: Oscillations and waves

sphere area
47Tr2

intensity at
surface of sphere

source strength

The energy twice as far fromthe  2r . :

source is spread over four times
the area, hence one-fourth the intensity. 3r

Figure 2.49 The intensity from the source varies as an inverse square
relationship.

Worked example 2.7

A large explosion is detected 200 m away. The intensity at
this distance is measured to be 400 MW/m?. A few seconds
later the explosion is recorded 3.2 km away. Find the power of
the original explosion and the intensity recorded at the larger
distance.

o [= £ 0 State the relationship to
A 4nr be used
o P=JA=1X4nr Rearrange to make P the
subject
® P=400x10°x 4 x mx 200® Substitute known values
e P=2.0x10%W Solve for P and give the
units

We can now use the intensity equation to determine the
intensity at 3.2 km.
P _ P

R State the relationship to
A 4nr be used
o [=2.0x10"/ (4 xmx 32002 Substitute known values
® [=1.6x10°W/m? Solve for 1 and give the
units
Grade 12
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Hearing and the decibel

Many sound intensity measurements are made relative to the
threshold of hearing intensity I.

This is defined as:
© I=1x10"W/m?

One common way to measure the loudness.of sound is to use
the decibel scale. The decibel (dB) is a logarithmic unit of
measurement. Decibels measure the ratio of a given intensity I to
the threshold of hearing intensity I This'means so that I, has the
value 0 decibels (0 dB).

The intensity of a sound in dB is given by:

I
* I(dB) = IOIng(—)
Figure 2.50 The human ear can AL i

detect tiny changes in pressure The human ear is incredibly sensitive to sound. I, represents a

pressure change of less than one billionth of standard atmospheric
pressure. In reality the actual threshold of the average human is
closer to 2.5 x 1072 W/m?. This corresponds to 4 dB.

The threshold of hearing varies with frequency. The ear is most
sensitive to sounds between 2000 and 5000 Hz. This can be seen on
a hearing curve.
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KEY WORDS Figure 2.51 A hearing curve shows how the threshold of hearing
threshold of hearing g varies with frequency.

standard threshold-against
which measurements of sound
intensity are made. It is equal
to 0 dB intensity.

This curve illustrates why certain sounds at the same intensity
appear to have different volumes. The human ear is simply better a
detecting some frequencies of sound than others. The exact shape of
the curve depends on a number of factors including age, exposure

decibel logarithmic unit of to loud sounds and the physical characteristics of the ear.
Z}escgg;zment of the loudness The upper limit of human hearing is also rather subjective. A

common upper limit is the threshold of pain. This is the point at
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which pain begins to be felt by the listener. This value varies from
individual to individual and for a given individual over time.

In general, younger people are more tolerant of loud sounds.

A common value for this limit is 130 dB.

One way to express the range of human hearing is to use the
standard threshold of hearing up to the threshold of pain. This
represents a huge range, from I to 1 x 10" I,

The speed of sound

As discussed in the previous chapter the speed of sound depends
on the medium the sound is travelling through. If the sound is
travelling through a solid the speed is given by:

"Y
e v= -
P

where

Y = Young’s modulus of the solid (effectively a measure of the
stiffness of the solid) in Pa

p = density of the solid in kg/m’

If the sound is travelling through a fluid (liquid or gas) there is a
similar equation:

JB
¢ v= R
P

where

B = bulk modulus of the fluid (effectively a measure of the
compressibility of the fluid) in Pa

p = density of the fluid in kg/m’

Both equations show the speed of sound increases with the
‘stiffness’ of the material and decreases with the density. The table
below gives typical values for the Young’s/bulk modulus and
densities of materials. The actual values vary depending of the exact
composition of the substance.

KEY WORDS

hearing curve a graph which
shows how threshold of
hearing varies with frequency

threshold of pain the point
at which pain, caused by
sound, begins.to be felt by the
listener

Material Y (GPa) B (Pa) p (kg/m?)
Air - 1.0 x 10° 1.0
Water - 2.2 x10° 1000
Glass 40 - 4000
Steel 160 - 7500
Diamond 442 - 3500
Grade 12

DID YOU KNOW?

You may recall that the
speed of sound through air
is given by the equation

T,
v=3314/1 k_ m/s
\j T273°C

Think about this...

Just like a transverse
travelling wave a longitudinal
travelling wave (like sound)
can be represented using a
sine or cosine function.

In this case.

S(x, £) = A cos( 2%’( _ 2nft)

In this equation S is used
instead of y to denote
horizontal displacement
of a particle away from its
equilibrium position.
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Figure 2.52 You hear the Doppler
effect whenever a siren travels
passed.

DID YOU KNOW?

The Doppler effect (or
Doppler shift), is named
after Austrian physicist
Christian Doppler who first
explained it in 1842. The
Doppler effect works with
light too. Analysing the
light coming from distant
galaxies has shown us

that they are moving away
from us and allowed us to
calculate how fast.

Discussion activity

If you stood in the middle
of a road with a blindfold
on and could hear the siren
of an ambulance coming
towards you, you should be
much more worried if the
pitch did not change at all
than if the pitch started to
drop a little as the sound get
louder. Why?

102

The Doppler effect

When a vehicle with siren, such as an ambulance or police car,

goes past us we notice a pronounced change in pitch. As the siren
approaches the pitch is higher; as it moves away from us the pitch is
lower. This is known as the Doppler effect, or Doppler shift.

If a sound source transmits sound in all directions, like a siren,
and it is stationary, then the wavelength of the transmitted

sound, and hence its frequency, is same/in all directions, and this
is the frequency of the sound source. However, if the source is
approaching a listener the sound waves are compressed. This is
because, after emitting one wave front, the source moves towards
the listener and emits the next wave front from a position closer
to the listener. The wavelength of the sound arriving at the listener
is made shorter and, since the speed at which the sound travels,
the frequency, calculated by f = v/\ is higher. The faster the source
is moving the bigger the change, or shift, in frequency. If the
source is moving away from the listener, the opposite happens: the
wavelength is made longer and the frequency made lower. This

is shown in Figure 2.53. Exactly the same effect is observed if the
source remains stationary and the listener moves towards or away
from the source; it is the relative velocity that matters. The increase
in wavelength; AX, is given by

A\ - relative velocity of listener and source away from each other
A velocity of sound

Worked example 2.8

You measure the frequency you hear from an ambulance siren
at 466 Hz. You know that the siren actually transmits sound at
a frequency of 440 Hz, and the speed of sound in air is 340 m/s.
What is the velocity of the ambulance relative to you?

For f = 440 Hz the wavelength is

v _ 340
. —7—@—0.7727m
For f = 466 Hz the wavelength is
v _ 340
e A 7 = m 0.7296 m

Therefore AN = 0.7296 - 0.7727 = -0.0431 m, and the velocity
of the ambulance is

AL x speed of sound = Sl
x P = 0.7727

i.e. the ambulance is approaching at 19.0 m/s (= 68 km/h?).

x 340 = -19.0 m/s
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sound waves from a moving source
¢ KEY WORDS

Doppler effect a change in
the observed frequency of

a wave occurring-when the
source and observer are in

) motion relative to each other,

with the frequency increasihg
when the source and observer
approach each other and
decreasing when they move
apart

source
approaching,
wavelength shorter,
freqency higher

source
receding,
wavelength longer,

fregency lower

Figure 2.53 The Doppler effect. Sound waves from an approaching
source are compressed and therefore shorter, giving a higher frequency
sound; waves from a receding source are stretched and therefore
longer, giving a lower frequency sound.

There are three situations to consider:
Sound source is stationary relative to the listener

In this case the frequency received by the listener is the same as that
produced by the source.

* =k
Sound source is moving toward the listener (or vice-versa)
In this case the frequency received by the listener greater than the
frequency produced by the source. The relationship is given by

1
* L=l

7
where

v, = speed of source
v = speed of sound in air
Sound source is moving away from the listener (or vice-versa)

In this case the frequency received by the listener lower than the
frequency produced by the source. The relationship is given by

1
* h=f—v
1+VS
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Figure 2.54 Most types of radar
use the Doppler effect

104

Applications of Doppler effect

The Doppler effect has a number of applications including:

Astronomy

Observations of the spectral lines in the visible spectrum of
light from distant galaxies show a red-shift. This has been used
to demonstrate the universe is expandingand is a key piece of
evidence in support of the big bang theory. The Doppler effect
is used to measure the speed at which stars and galaxies are
approaching or receding from us.

Medical imaging and blood flow measurement

An echocardiogram is used to determine the direction and velocity
of blood flow using the Doppler effect (in this case ultrasound is
used).

Other flow measurements

Instruments like the laser Doppler velocimeter are used to measure
velocities in a fluid flow. In this case a laser light is fired at a moving
fluid. A Doppler shift is observed from reflections off of particles
moving with the fluid.

Radar

The Doppler effect is used in some types of radar. It is used to
measure the velocity of a range of objects. A radar beam is fired at
a'moving target and reflects from the surface back to the detector.
Any change in wavelength is then recorded and the object’s velocity
can be accurately determined. Doppler radar is used in a range of
applications, including the speed of motorist, tennis serves, even the
speed of a football struck towards a goal.

In this section you have learnt that:

e Intensity of sound, measured in W/m?, is proportional to
amplitude squared and to frequency squared.

¢ Sound intensity may be found by:

® The threshold of hearing intensity I, =1 x 10-2 W/m2.
¢ The intensity of a sound in dB is given by:
I
I(dB) = 10[0910(17).
® One way to express the range of human hearing is to use the
standard threshold of hearing up to the threshold of pain.

® The speed of sound through a solid is given by v = ‘\[ ;Y
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The speed of sound through a fluid is given by v = '\/ %

The Doppler effect causes an increase in the frequency of
the received sound wave if the sound source and listener are
moving towards each other, a decrease in frequency if they
are moving away from each other.

When the source of sound is moving towards the listener

1
=k,
v
When the source of sound is moving away from the listener
1
fi=t v,
v

Review questions

1.

7.

Calculate the intensity in dB of a sound with an intensity of
6.2 X 10° W/m?>

Determine the intensity of the threshold of pain for an average
person.

Calculate the speed of sound through:

a) water
b) steel
¢) diamond.

Imagine that you swinging backwards and forwards on'a
child’s swing and you are listening to music coming from a
loudspeaker in front of you. Explain why the music might not
sound right.

The horn of a stationary car emits sound at a frequency of 440 Hz.
What frequency of note will you hear if you drive towards this
car at 20 m/s? ('The speed of sound in air = 340 m/s.)

Two cars drive along the same road towards each other, one
at 15 m/s and the other at 12 m/s: Each car horn sounds at
256 Hz. Calculate the frequency that the driver of each car
hears coming from the other car.

Describe three uses of the Doppler effect.

End of unit questions

1.

A simple pendulum is made from a bob of mass 0.040 kg
suspended on a light string of length 1.4 m. Keeping the string
taut, the pendulum is pulled to one side until it has gained a
height of 0.10 m. Calculate

a) the total energy of the oscillation
b) the amplitude of the resulting oscillations

c) the period of the resulting oscillations

Grade 12
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d) the maximum velocity of the bob
e) the maximum kinetic energy of the bob.

A piston in a car engine has a mass of 0.75 kg and moves
with motion which is approximately simple harmonic. If the
amplitude of this oscillation is 10 cm and the maximum safe
operating speed of the engine is 6000 revolutions per minute,
calculate:

a) maximum acceleration of the piston
b) maximum speed of the piston
c) the maximum force acting on the piston:

An experiment is carried out to measure the spring constant
of a spring. A mass of 500 g is'suspended on the spring. It is
pulled down a small distance and the time for 20 oscillations is
measured to be 34 s.

a) Explain why the mass performs simple harmonic motion.
b) What is the spring constant?
c) Whatis the equilibrium extension of the spring?

d) If the mass and spring were to be moved to the surface
of the Moon (where the gravitational field strength in
1.6 N/kg) what would the effect be on the time period of
oscillation and on the equilibrium extension of the spring?

A car of mass 820 kg has an under damped suspension system.

When it is driven by a driver of mass 80 kg over a long series of
speed bumps 10.m apart at a speed of 3 m/s the car bounces up
and down with surprisingly large amplitude.

a) Explain why this effect occurs.

b) - Calculate the net spring constant of the car suspension
system.

If you are given a metal rod and a hammer, how must you hit
the rod to produce:

a) atransverse wave, and
b) alongitudinal wave?

A string of a musical instrument has a fundamental frequency
of 196 Hz. What are the frequencies of the 2", 3™ and 4™
harmonics of this string.

A string is 1.6 m long, and waves travel along it at 2400 m/s.

a) Sketch alabelled diagram to describe the stationary wave
pattern for 4™ harmonic mode of vibration.

b) Calculate the frequency of this vibration.

c) On the same set of axes, sketch graphs of displacement
against time for the oscillations 0.2 m and 0.5 m from one
end of the string.

Grade 12



UNIT 2: Oscillations and waves

8. When tuning a piano, a musician plays a note that should be at
110 Hz while at the same time tapping a 110 Hz tuning fork and
holding it next to the strings. He hears beats at 4 Hz.

a) State and explain what frequencies the piano could be
producing.

b) Draw a sketch graph to show the resultant sound as a
variation in displacement against time. Label the time axis
with values.

c) Explain how the musician now finishes tuning his piano

9. A short string will usually oscillate with smaller amplitude
than a longer string. Explain the consequence for the relative
loudness of different frequencies played by a string instrument
if this was not the case.

10. A whistle producing a sound at 1 KHz is whirled in a horizontal
circle at a speed of 18 m/s. What are the highest and lowest
frequencies heard by a listener standing a few metres awayj; if
the speed of sound in air is 340 m/s?

Grade 12
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